A solid disk of radius, R = 0.063 m, and mass, M= 0.500 kg, has a small hole drilled through it halfway between its center and outer edge and the disk is pinned to the wall through the hole so that it may rotate freely on the pin. a) Using a free-body diagram, with the weight of the disk acting at its centre of mass, determine the torque on the system about the axis and determine, using similar arguments as were used for a pendulum for the class notes, the constant k for the linear restoring torque in this case. b)The effective mass of the system will be the moment of inertia about the axis which you have already calculated above. Your work above should establish that the system executes SHM with the angle theta as the variable rather than the displacement, x, as was the case for the spring motion we studied in class. Use the similarity of this analogous system to follow the same steps as were used in class to get the angular frequency of a pendulum and determine the period that the system will oscillate through

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 75P: A wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R...
icon
Related questions
Question

A solid disk of radius, R = 0.063 m, and mass, M= 0.500 kg, has a small hole drilled through it halfway between its center and outer edge and the disk is pinned to the wall through the hole so that it may rotate freely on the pin.

a) Using a free-body diagram, with the weight of the disk acting at its centre of mass, determine the torque on the system about the axis and determine, using similar arguments as were used for a pendulum for the class notes, the constant k for the linear restoring torque in this case.

b)The effective mass of the system will be the moment of inertia about the axis which you have already calculated above. Your work above should establish that the system executes SHM with the angle theta as the variable rather than the displacement, x, as was the case for the spring motion we studied in class. Use the similarity of this analogous system to follow the same steps as were used in class to get the angular frequency of a pendulum and determine the period that the system will oscillate through 

AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning