A 1120-kg car is being driven up a 7.03 ° hill. The frictional force is directed opposite to the motion of the car and has a magnitude of 490 N. A force F is applied to the car by the road and propels the car forward. In addition to these two forces, two other forces act on the car: its weight W and the normal force FN directed perpendicular to the road surface. The length of the road up the hill is 281 m. What should be the magnitude of F, in Newtons, so that the net work done by all the forces acting on the car is 188 kJ?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter10: Rotational Motion
Section: Chapter Questions
Problem 80P
icon
Related questions
Topic Video
Question

A 1120-kg car is being driven up a 7.03 ° hill. The frictional force is directed opposite to the motion of the car and has a magnitude of 490 N. A force F is applied to the car by the road and propels the car forward. In addition to these two forces, two other forces act on the car: its weight W and the normal force FN directed perpendicular to the road surface. The length of the road up the hill is 281 m. What should be the magnitude of F, in Newtons, so that the net work done by all the forces acting on the car is 188 kJ?

Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning