Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area A, = 2 m2 and a test-section cross-sectional area A2 = 0.5 m2. The pressure in the test section is P2 = 1 atm. Assume constant density equal to standard sea level density, calculate the pressure (in kPa) required in the reservoir, P1, necessary to achieve a flow velocity V2: 40 m/s in the test section. a. From item no. 1, calculate the mass flow rate (in kg/s) through the wind tunnel. b. Calculate the Mach number of the vehicle in air. c. Calculate the Mach number of the vehicle in hydrogen.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

1. Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area A, = 2 m2 and a test-section cross-sectional area A2 = 0.5 m2. The pressure in the test section is P2 = 1 atm. Assume constant density equal to standard sea level density, calculate the pressure (in kPa) required in the reservoir, P1, necessary to achieve a flow velocity V2: 40 m/s in the test section.

a. From item no. 1, calculate the mass flow rate (in kg/s) through the wind tunnel.

b. Calculate the Mach number of the vehicle in air.

c. Calculate the Mach number of the vehicle in hydrogen.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 1 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY