Consider a model of an electron as a hollow sphere with radius R and the electron charge -e spread uniformly over that surface. a. Calculate the electric field inside and outside of the sphere. b. Calculate the electric potential that creates this field, and has a zero value at infinity. c. Calculate the work required to create this electron. d. Use Einstein’s equation relating rest mass to energy to derive a value for R. Unfortunately, your answer will be model-dependent. The traditional “Classical radius of the electron” is derived by setting the electrostatic work to be e2/(4pi e0 R)

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter6: Applications Of Newton’s Laws Of Motion
Section: Chapter Questions
Problem 79PQ: The radius of circular electron orbits in the Bohr model of the hydrogen atom are given by (5.29 ...
icon
Related questions
Question

Consider a model of an electron as a hollow sphere with radius R and the electron charge -e spread uniformly over that surface.

a. Calculate the electric field inside and outside of the sphere.

b. Calculate the electric potential that creates this field, and has a zero value at infinity.

c. Calculate the work required to create this electron.

d. Use Einstein’s equation relating rest mass to energy to derive a value for R. Unfortunately, your answer will be model-dependent. The traditional “Classical radius of the electron” is derived by setting the electrostatic work to be e2/(4pi e0 R)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 7 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning