Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity is 7.00 m/s2, and atmospheric pressure is 8.60 x 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid methane ocean to be 415 kg/m³. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m? (Enter your answer in N.) N (c) What is the pressure (in Pa) at a depth of 10.0 m in the methane ocean? Pa

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter11: Gravity, Planetary Orbits, And The Hydrogen Atom
Section: Chapter Questions
Problem 1OQ
icon
Related questions
Question
Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity is 7.00 m/s², and atmospheric pressure is 8.60 x 104 Pa. The
atmospheric temperature and pressure on this planet causes the density of the liquid methane ocean to be 415 kg/m³.
(a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean?
N
(b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m? (Enter your answer in N.)
(c) What is the pressure (in Pa) at a depth of 10.0 m in the methane ocean?
Pa
Transcribed Image Text:Imagine a particular exoplanet covered in an ocean of liquid methane. At the surface of the ocean, the acceleration of gravity is 7.00 m/s², and atmospheric pressure is 8.60 x 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid methane ocean to be 415 kg/m³. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m? (Enter your answer in N.) (c) What is the pressure (in Pa) at a depth of 10.0 m in the methane ocean? Pa
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Density of solids
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning