Statically Equivalent Loads. A highly idealized biomechanical model of the human body is shown below, sectioned in a horizontal plane through the lower back showing the major muscle forces in gray, with the back of the body in the positive y-direction. The same four muscles act on the left and right sides of the trunk and there is symmetry with respect to the y – z plane. On each side, the tensile (pulling) forces acting in each of the four different muscles are: FR = 150 N, Fo = 150 N, F1 = 230 N, and Fg = 320 N, and all are acting in the z-direction.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Statically Equivalent Loads. A highly idealized biomechanical model of the human body is shown
below, sectioned in a horizontal plane through the lower back showing the major muscle forces in
gray, with the back of the body in the positive y-direction. The same four muscles act on the left and
right sides of the trunk and there is symmetry with respect to the y – z plane. On each side, the
tensile (pulling) forces acting in each of the four different muscles are: FR = 150 N, Fo = 150 N, F1 =
230 N, and Fr = 320 N, and all are acting in the z-direction.
Assume that this system of muscle forces is statically equivalent to a single resultant force vector Fres
and a single resultant moment vector Mres, referenced to point 0.
a- For this cartesian coordinate system, calculate the three components (x, y, and z) of Mres
b- Which components (x, y, or z) of the resultant muscle moment vector would enable you to bend
in the forward-backward direction, bend to one side, and twist, respectively? Would the muscle
forces shown here cause you to bend forward or backward?
c- If you wanted to
statistically equivalent loads instead
only by a single force vector,
(call it Fres"), what would be the
represent the
FR
Fo
location of that force in this cross-
FR
FE
F
section?
FE
d- Muscles can only pull and can only
exert forces along their main
orientation (like a rope). If the body
wanted to devise a way to twist such
that the magnitude of the muscle
forces would be minimized, how do
FL
75 mm
15 mm
30 mm
40 mm
145 mm
50 mm
you think it could accomplish that?
Transcribed Image Text:Statically Equivalent Loads. A highly idealized biomechanical model of the human body is shown below, sectioned in a horizontal plane through the lower back showing the major muscle forces in gray, with the back of the body in the positive y-direction. The same four muscles act on the left and right sides of the trunk and there is symmetry with respect to the y – z plane. On each side, the tensile (pulling) forces acting in each of the four different muscles are: FR = 150 N, Fo = 150 N, F1 = 230 N, and Fr = 320 N, and all are acting in the z-direction. Assume that this system of muscle forces is statically equivalent to a single resultant force vector Fres and a single resultant moment vector Mres, referenced to point 0. a- For this cartesian coordinate system, calculate the three components (x, y, and z) of Mres b- Which components (x, y, or z) of the resultant muscle moment vector would enable you to bend in the forward-backward direction, bend to one side, and twist, respectively? Would the muscle forces shown here cause you to bend forward or backward? c- If you wanted to statistically equivalent loads instead only by a single force vector, (call it Fres"), what would be the represent the FR Fo location of that force in this cross- FR FE F section? FE d- Muscles can only pull and can only exert forces along their main orientation (like a rope). If the body wanted to devise a way to twist such that the magnitude of the muscle forces would be minimized, how do FL 75 mm 15 mm 30 mm 40 mm 145 mm 50 mm you think it could accomplish that?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY