The evolution of a star depends on its size. If a star is sufficiently large, the gravity forces holding it together may be large enough to collapse it into a very dense object composed mostly of neutrons. The density of such a neutron star is about 1014 times that of the Earth. Suppose that a star initially had a radius of 7 x 108 km, and it rotated once every 26 days. What would be the period of rotation if the star collapsed to a radius of 15 km? (1.19 x 10-14 days)

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter39: Relativity
Section: Chapter Questions
Problem 64PQ
icon
Related questions
Question
The evolution of a star depends on its size. If a star is sufficiently large, the gravity
forces holding it together may be large enough to collapse it into a very dense object
composed mostly of neutrons. The density of such a neutron star is about 1014 times
that of the Earth. Suppose that a star initially had a radius of 7 x 108 km, and it
rotated once every 26 days. What would be the period of rotation if the star collapsed
to a radius of 15 km? (1.19 x 10-14 days)
Transcribed Image Text:The evolution of a star depends on its size. If a star is sufficiently large, the gravity forces holding it together may be large enough to collapse it into a very dense object composed mostly of neutrons. The density of such a neutron star is about 1014 times that of the Earth. Suppose that a star initially had a radius of 7 x 108 km, and it rotated once every 26 days. What would be the period of rotation if the star collapsed to a radius of 15 km? (1.19 x 10-14 days)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning