You drop an ice cube into an insulated flask full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 65.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 670 g and an initial temperature of 28.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or to the environment.)

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 6OQ
icon
Related questions
icon
Concept explainers
Question
100%

You drop an ice cube into an insulated flask full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 65.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 670 g and an initial temperature of 28.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or to the environment.)

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
An Introduction to Physical Science
An Introduction to Physical Science
Physics
ISBN:
9781305079137
Author:
James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning