A graduated cylinder full of water in the lab on a bench that has just been waxed. The cylinder is 1 cm^2 in the inner cross-sectional area, and the water is 10 cm high. The temperature is at room temperature (25 °C) and remains constant. Water-air interface energy (i.e., water surface tension) is approximately 0.072 N/m at 25 °C. All the water spills and forms a puddle that can be approximated as a thin disk. (a) If this disk’s diameter is 14 cm, calculate the work required to create just the air-water interface. (b) Calculate the change in the gravitational potential energy of the water puddle in (b) (g = 9.8 m/s2

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.9P: When a sphere falls freely through a homogeneous fluid, it reaches a terminal velocity at which the...
icon
Related questions
Question

A graduated cylinder full of water in the lab on a bench that has just been waxed. The cylinder is 1 cm^2 in the inner cross-sectional area, and the water is 10 cm high. The temperature is at room temperature (25 °C) and remains constant. Water-air interface energy (i.e., water surface tension) is approximately 0.072 N/m at 25 °C. All the water spills and forms a puddle that can be approximated as a thin disk.

(a) If this disk’s diameter is 14 cm, calculate the work required to create just the air-water interface.

(b) Calculate the change in the gravitational potential energy of the water puddle in (b) (g = 9.8 m/s2

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning