In a concentric, two-pipe heat exchanger, the pressurized water with a flow rate of 12000 kg/h is heated from 35 °C to 120 °C with a flow of 5000 kg/h with superheated water (pressurized water) at 300 °C inlet temperature. The total heat transfer coefficient is 1500 W/m'K. Use TS 1996 Heat Exchangers standard for design. Where the required heat exchanger surface area is 3.2m a)Calculate the pressure drop. b)Find the insulation thickness to be made outside the body.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter10: Heat Exchangers
Section: Chapter Questions
Problem 10.14P
icon
Related questions
Question
In a concentric, two-pipe heat exchanger, the pressurized water with a flow rate of 12000 kg/h is heated from 35 °C to 120 °C with a flow of 5000 kg/h with superheated water (pressurized water) at 300 °C inlet temperature. The total heat transfer coefficient is 1500 W/m'K. Use TS 1996 Heat Exchangers standard for design. Where the required heat exchanger surface area is 3.2m a)Calculate the pressure drop. b)Find the insulation thickness to be made outside the body.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning