Chemistry: The Molecular Science
Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 137QRT

(a)

Interpretation Introduction

Interpretation:

The concentration of SnF2 in ppm and ppb has to be calculated.

(a)

Expert Solution
Check Mark

Answer to Problem 137QRT

The concentration of SnF2 in ppm and ppb are 6300 ppm and 6,300,000 ppb, respectively.

Explanation of Solution

Given information is given as, 0.63%ofSnF2 is present.

As known, 1%=10,000 ppm.

So, 0.63%ofSnF2 becomes,

    0.63%SnF2×10,000ppm1%=6300 ppmSnF2.

Conversion of ppm to ppb as follows,

  6300 ppmSnF2×1000ppbSnF21ppmSnF2=6,300,000 ppbSnF2.

Hence, the concentration of SnF2 in ppm and ppb are 6300 ppm and 6,300,000 ppb, respectively.

(b)

Interpretation Introduction

Interpretation:

The molarity of SnF2 in solution has to be calculated.

(b)

Expert Solution
Check Mark

Answer to Problem 137QRT

The molarity of SnF2 in solution is 0.040M.

Explanation of Solution

A sample of exactly 100g of solution contains 0.63gSnF2 and 99.37g water. So,

  0.63gSnF2102gsolution×0.998gsolution1mL×1molSnF2 156.707gSnF2×1000mL1L=0.040MSnF2.

Hence, molarity of SnF2 in solution is 0.040M.

(c)

Interpretation Introduction

Interpretation:

From one metric ton of cassiterite, number of 250mL bottles of 0.63%SnF2 solution that can be prepared has to be calculated.

(c)

Expert Solution
Check Mark

Answer to Problem 137QRT

The number of bottles calculated as 4.99×105.

Explanation of Solution

The given reaction;

  SnO2(s)+2C(s)Sn(s)+2CO(g).

In exactly one metric ton, 106g is present; then theoretical value of Tin is,

  106gSnO2×1molofSnO2 150.709gSnO2×1molSn 1molSnO2×118.710gSn1molSn=7.88×105gSn.

So, the actual mass of Tin is,

  7.88×105gSntheoretical×80gSnactual100gSntheoretical=6.30×105gSn.

The theoretical mass of SnF2 is,

  6.30×106gSn×1molofSn 118.710gSn×1molSnF2 1molSn×156.707 gSnF21molSnF2=8.32×105gSnF2.

The actual mass of SnF2 is,

  8.32×105gSnF2theoretical×94 g SnF2actual100gSnF2theoretical=7.82×105gSnF2.

Number of bottles is calculated by using bottle volume; which is calculated by molarity obtained

  7.82×105g SnF2×1molSnF2 156.707gSnF2×1L0.040mol SnF2×1000mL1L×1Bottle250mL=4.99×105bottles.

Hence, number of bottles calculated as is 4.99×105.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A solution was prepared by dissolving 367 mg of K3Fe(CN)6 (329.2 g/mol) in sufficient water to give 750.0 mL. Calculate (a) the molar analytical concentration and Normality of K3Fe(CN)6. (b) the molar concentration of K+. (c) the molar concentration of Fe(CN)63-. (d) the weight/volume percentage of K3Fe(CN)6.
11. (ii) A student was given 400 cm of aqueous ammonia solution, NH,(ag), The student was asked to determine how many moles of NH, had been dissolved to prepare the solution. The student titrated 25.0cm of NH.(ag) and found that it reacted exactiy with 32.5cm3 of 0.100 mol dm sulturic acid. The equation for this reaction is shown below. 2NH,(aq) + H,SO,(aq) → (NH)SO,(aq) Calculate the amount, in moles, of NH, in the original 400 cm3 solution. mol answer =
To obtain a precipitate which is useful for gravimetric analysis, the analyst tries to obtain conditions to encourage crystal growth, as opposed to the formation of a colloid. Which of the following statements aids in the formation of a crystalline precipitate and the formation of a colloidal precipitate? Drag your answers to the appropriate markers. (a) The solutions are made as dilute as practical to allow crystals to form slowly. (b) The addition of strong electrolytes (e.g. NaCl or HCl) in the analyte solution, prior to the precipitation reaction. (c) After the digestion of the precipitate, the hot solution is cooled down to room temperature gradually and kept undisturbed overnight. (d) The analyst selects the precipitate of the analyte with the Ksp less than 1 x 10 -15 (e) The Relative Supersaturation value of the analyte solution should be greater than 1 million upon the addition of the precipitating reagent. formation of colloidal precipitate favored formation of crystalline…

Chapter 13 Solutions

Chemistry: The Molecular Science

Ch. 13.6 - Prob. 13.4PSPCh. 13.6 - Prob. 13.8ECh. 13.6 - Drinking water may contain small quantities of...Ch. 13.6 - Prob. 13.9CECh. 13.6 - A 500-mL bottle of Evian bottled water contains 12...Ch. 13.6 - The mass fraction of gold in seawater is 1 103...Ch. 13.6 - Prob. 13.6PSPCh. 13.6 - Prob. 13.7PSPCh. 13.6 - Prob. 13.8PSPCh. 13.6 - Prob. 13.9PSPCh. 13.6 - Prob. 13.12ECh. 13.6 - Prob. 13.13CECh. 13.7 - The vapor pressure of an aqueous solution of urea....Ch. 13.7 - Prob. 13.14ECh. 13.7 - Prob. 13.15ECh. 13.7 - Prob. 13.11PSPCh. 13.7 - Suppose that you are closing a cabin in the north...Ch. 13.7 - A student determines the freezing point to be 5.15...Ch. 13.7 - Prob. 13.17CECh. 13.7 - Prob. 13.13PSPCh. 13.9 - Prob. 13.18CECh. 13.10 - Prob. 13.19ECh. 13.10 - Prob. 13.20ECh. 13 - Prob. 1QRTCh. 13 - Prob. 2QRTCh. 13 - Prob. 3QRTCh. 13 - Prob. 4QRTCh. 13 - Prob. 5QRTCh. 13 - Prob. 6QRTCh. 13 - Prob. 7QRTCh. 13 - Prob. 8QRTCh. 13 - Prob. 9QRTCh. 13 - Prob. 10QRTCh. 13 - Prob. 11QRTCh. 13 - Prob. 12QRTCh. 13 - Prob. 13QRTCh. 13 - Prob. 14QRTCh. 13 - Beakers (a), (b), and (c) are representations of...Ch. 13 - Prob. 16QRTCh. 13 - Simple acids such as formic acid, HCOOH, and...Ch. 13 - Prob. 18QRTCh. 13 - Prob. 19QRTCh. 13 - Prob. 20QRTCh. 13 - Prob. 21QRTCh. 13 - Prob. 22QRTCh. 13 - Prob. 23QRTCh. 13 - Prob. 24QRTCh. 13 - Prob. 25QRTCh. 13 - Prob. 26QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to answer...Ch. 13 - Prob. 28QRTCh. 13 - Prob. 29QRTCh. 13 - Prob. 30QRTCh. 13 - The Henrys law constant for nitrogen in blood...Ch. 13 - Prob. 32QRTCh. 13 - Prob. 33QRTCh. 13 - Prob. 34QRTCh. 13 - Prob. 35QRTCh. 13 - Prob. 36QRTCh. 13 - Prob. 37QRTCh. 13 - Prob. 38QRTCh. 13 - Prob. 39QRTCh. 13 - Prob. 40QRTCh. 13 - A sample of water contains 0.010 ppm lead ions,...Ch. 13 - Prob. 42QRTCh. 13 - Prob. 43QRTCh. 13 - Prob. 44QRTCh. 13 - Prob. 45QRTCh. 13 - Prob. 46QRTCh. 13 - Prob. 47QRTCh. 13 - Prob. 48QRTCh. 13 - Prob. 49QRTCh. 13 - Prob. 50QRTCh. 13 - Consider a 13.0% solution of sulfuric acid,...Ch. 13 - You want to prepare a 1.0 mol/kg solution of...Ch. 13 - Prob. 53QRTCh. 13 - Prob. 54QRTCh. 13 - Prob. 55QRTCh. 13 - A 12-oz (355-mL) Pepsi contains 38.9 mg...Ch. 13 - Prob. 57QRTCh. 13 - Prob. 58QRTCh. 13 - Prob. 59QRTCh. 13 - Prob. 60QRTCh. 13 - Prob. 61QRTCh. 13 - Prob. 62QRTCh. 13 - Prob. 63QRTCh. 13 - Prob. 64QRTCh. 13 - Prob. 65QRTCh. 13 - Prob. 66QRTCh. 13 - Calculate the boiling point and the freezing point...Ch. 13 - Prob. 68QRTCh. 13 - Prob. 69QRTCh. 13 - Prob. 70QRTCh. 13 - Prob. 71QRTCh. 13 - Prob. 72QRTCh. 13 - The freezing point of p-dichlorobenzene is 53.1 C,...Ch. 13 - Prob. 74QRTCh. 13 - Prob. 75QRTCh. 13 - A 1.00 mol/kg aqueous sulfuric acid solution,...Ch. 13 - Prob. 77QRTCh. 13 - Prob. 78QRTCh. 13 - Prob. 79QRTCh. 13 - Prob. 80QRTCh. 13 - Prob. 81QRTCh. 13 - Differentiate between the dispersed phase and the...Ch. 13 - Prob. 83QRTCh. 13 - Prob. 84QRTCh. 13 - Prob. 85QRTCh. 13 - Prob. 86QRTCh. 13 - Prob. 87QRTCh. 13 - Prob. 88QRTCh. 13 - Prob. 89QRTCh. 13 - Prob. 90QRTCh. 13 - Prob. 91QRTCh. 13 - Prob. 92QRTCh. 13 - Prob. 93QRTCh. 13 - Prob. 94QRTCh. 13 - Prob. 95QRTCh. 13 - Prob. 96QRTCh. 13 - Prob. 97QRTCh. 13 - Prob. 98QRTCh. 13 - Prob. 99QRTCh. 13 - Prob. 100QRTCh. 13 - Prob. 101QRTCh. 13 - Prob. 102QRTCh. 13 - In The Rime of the Ancient Mariner the poet Samuel...Ch. 13 - Prob. 104QRTCh. 13 - Prob. 105QRTCh. 13 - Calculate the molality of a solution made by...Ch. 13 - Prob. 107QRTCh. 13 - Prob. 108QRTCh. 13 - Prob. 109QRTCh. 13 - Prob. 110QRTCh. 13 - The organic salt [(C4H9)4N][ClO4] consists of the...Ch. 13 - A solution, prepared by dissolving 9.41 g NaHSO3...Ch. 13 - A 0.250-M sodium sulfate solution is added to a...Ch. 13 - Prob. 114QRTCh. 13 - Prob. 115QRTCh. 13 - Prob. 116QRTCh. 13 - Prob. 117QRTCh. 13 - Prob. 118QRTCh. 13 - Prob. 119QRTCh. 13 - Refer to Figure 13.10 ( Sec. 13-4b) to determine...Ch. 13 - Prob. 121QRTCh. 13 - Prob. 122QRTCh. 13 - Prob. 123QRTCh. 13 - Prob. 124QRTCh. 13 - In your own words, explain why (a) seawater has a...Ch. 13 - Prob. 126QRTCh. 13 - Prob. 127QRTCh. 13 - Prob. 128QRTCh. 13 - Prob. 129QRTCh. 13 - Prob. 130QRTCh. 13 - Prob. 131QRTCh. 13 - A 0.109 mol/kg aqueous solution of formic...Ch. 13 - Prob. 133QRTCh. 13 - Maple syrup sap is 3% sugar (sucrose) and 97%...Ch. 13 - Prob. 137QRTCh. 13 - Prob. 13.ACPCh. 13 - Prob. 13.BCPCh. 13 - Prob. 13.CCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY