Life in the Universe (4th Edition)
Life in the Universe (4th Edition)
4th Edition
ISBN: 9780134089089
Author: Jeffrey O. Bennett, Seth Shostak
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 1RQ
To determine

Describe the journey of Pioneer 10 and illustrate the challenges of interstellar travel.

Expert Solution & Answer
Check Mark

Answer to Problem 1RQ

The Pioneer 10 craft was designed for its journey to the Jupiter only. The challenges faced in the interstellar travels are the long distance to be covered and the amount of energy required to make a craft to cover such a long distance.

Explanation of Solution

The Pioneer 10 was targeted to be launched to the planet Jupiter. The craft reached its first target in a time period of 21 months. If it is considered that the Pioneer 10 continues to move at this speed then it would require almost 115,000 years. The trajectory of the Pioneer 10 was also aimed in such a way that it only goes towards the Jupiter. It will not come closer to the any start by more than 3.3 light years in next million years also.

There are several challenges faced in the interstellar travels because of the distance that needs to be covered and also the amount of energy required for this travel. The crafts designed on earth take around 100,000 years for interstellar travel. This would consume the energy almost more than the total energy of the world.

The interstellar travel also requires the space craft to be kept safe from the space debris which are found frequently in the far space regions. Therefore, these are the several challenges faced by the scientists in the interstellar travel.

Conclusion:

Thus, the Pioneer 10 craft was designed for its journey to the Jupiter only. The challenges faced in the interstellar travels are the long distance to be covered and the amount of energy required to make a craft to cover such a long distance.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is a Worm Hole? How can we travel into the Worm Hole?
Tutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…
Tutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)

Chapter 13 Solutions

Life in the Universe (4th Edition)

Ch. 13 - Why does it seem that other civilizations, if they...Ch. 13 - What arc Von Neumann machines? How do they affect...Ch. 13 - Describe the coral model of galactic colonization....Ch. 13 - Briefly discuss possible motives for galactic...Ch. 13 - Summarize the three general categories of possible...Ch. 13 - Briefly discuss the profound implications of the...Ch. 13 - What known problems were solved when Einstein...Ch. 13 - Prob. 18RQCh. 13 - Besides the idea that you cannot reach the speed...Ch. 13 - Prob. 20RQCh. 13 - Prob. 21TYUCh. 13 - Prob. 22TYUCh. 13 - Each of the following describes some futuristic...Ch. 13 - Prob. 24TYUCh. 13 - Prob. 25TYUCh. 13 - Prob. 26TYUCh. 13 - Prob. 27TYUCh. 13 - Prob. 28TYUCh. 13 - Prob. 29TYUCh. 13 - Prob. 30TYUCh. 13 - Prob. 31TYUCh. 13 - The amount of energy that would be needed to...Ch. 13 - The rocket engines of our current spacecraft are...Ch. 13 - Suppose that a spaceship was launched in the year...Ch. 13 - Prob. 35TYUCh. 13 - Prob. 36TYUCh. 13 - Which of the following questions best represents...Ch. 13 - Prob. 38TYUCh. 13 - Which of the following is not relative in the...Ch. 13 - Prob. 40TYUCh. 13 - Prob. 41POSCh. 13 - Prob. 42POSCh. 13 - Prob. 44IFCh. 13 - What's Wrong with This Picture? Many science...Ch. 13 - Large Rockets. Suppose we built a rocket that...Ch. 13 - Prob. 47IFCh. 13 - Solution to the Fermi Paradox. Among the various...Ch. 13 - Prob. 50IFCh. 13 - Cruise Ship Energy. Suppose we have a spaceship...Ch. 13 - Prob. 52IFCh. 13 - The Multistage Rocket Equation. The rocket...Ch. 13 - Relativistic Time Dilation. Use the time dilation...Ch. 13 - Testing Relativity. A + meson produced at rest has...Ch. 13 - Prob. 57IFCh. 13 - Prob. 58IFCh. 13 - Prob. 59IFCh. 13 - Prob. 60IFCh. 13 - The Turning Point. Discuss the idea that the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax