General Physics, 2nd Edition
General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
Question
Book Icon
Chapter 29, Problem 1E

(a)

To determine

The energy required to transfer one electron from Na to Cl.

(a)

Expert Solution
Check Mark

Answer to Problem 1E

The  energy  required to transfer one electron from Na to Cl is 1.3eV.

Explanation of Solution

The energy required to transfer one electron from Na to Cl is equal to the difference between the required energy to remove an electron from the sodium and the energy release to bind an electron to chlorine.

Write the expression for transfer on electron from Na to Cl.

  ΔE=ENaECl        (I)

Here, ΔE is the energy required to transfer one electron from Na to Cl, ENa is the ionization energy of sodium and ECl is the energy to bind the electron to chlorine.

Conclusion:

Substitute 5.12eV for ENa and 3.82eV for ECl in equation (I).

  ΔE=5.12eV-3.82eVΔE=1.3eV

Thus, the energy required to transfer one electron from Na to Cl is 1.3eV.

(b)

To determine

The electric potential energy.

(b)

Expert Solution
Check Mark

Answer to Problem 1E

The electric potential energy is 6.1eV.

Explanation of Solution

Coulomb force is the amount of force between two point charges, if the point charges are equal in magnitude and sign then the forces are repulsive in nature and if the charges are opposite in nature, the force between the two charges will be attractive in nature.

Eelctric potential energy is the potential energy that results from coulombic forces.

Write the expression for the electric potential energy for the charge +e and e.

  U=ke2r0        (II)

Here, U is the electric potential energy, k is the coulomb constant, +e and e

are the point charges and r0 is the distance between the two point charges.

Conclusion:

Substitute 9.0×109N.m2/C2 for k, 1.6×1019C for +e and e and 2.36×1010m for r0  in equation (II).

    U=9.0×109N.m2/C2(1.6×1019C)22.36×1010m×1eV1.6×1019JU=6.1eV

Thus, the electric potential energy is 6.1eV.

(c)

To determine

The energy required to separate the sodium chloride molecule to its constituents.

(c)

Expert Solution
Check Mark

Answer to Problem 1E

The  energy required to separate the sodium chloride molecule to its constituents is 4.8eV.

Explanation of Solution

The total energy of the molecule is the sum of the required energy to transfer one electron from sodium to chlorine and the potential energy.

Write the expression for total energy that is the sum of transfer on electron from Na to Cl and the potential energy.

  E'=ΔE+U        (III)

Here, E' is the total energy and ΔE is the energy required to transfer one electron from Na to Cl and U is the electric potential energy.

Conclusion:

Substitute 1.3eV for ΔE and -6.1eV for U in equation (III).

  E'=1.3eV+(-6.1eV)E'=4.8eV

Thus, the  energy required to separate the sodium chloride molecule to its constituents is 4.8eV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a conductor. If one of the terminals is subject to a higher potential while the other terminal to a lower potential, which of the following happens? The free electrons in the conductor will move and concentrate on the side with higher potential. The free electrons in the conductor will move and concentrate on the side with lower potential. The valence electrons will be dislodged from their parent atoms and move in random directions in the conductor. The answer cannot be found on the other choices.
The attractive force between a pair of Sr2+ and O2- ions is 1.52 x 108 N and the ionic radius of O2- ions is 0.134 nm. Calculate the ionic radius of the Sr2+ ion. (Given: Electron cłarge, e = 1.6 x 10-19C, the permittivity of free space, Eo = 8.85 x 10-12C?N'm²)
One model for the potential energy of a two-atom molecule, where the atoms are separated by a distance r, is U(r) = Uo[(¹) ¹2 – ( )²] where ro = 0.8 nm and U₁ = 6.1 eV. Note: 1 eV = 1.6 × 10-19 J. Some helpful units: [Force] = eV/nm [Energy] = eV [distance] = nm Equilibrium Distance What is the distance between the atoms when the molecule is in stable equilibrium? Click here for a hint T'eq Hint: Hint: Hint: Hint: Hint: Hint: Force If the distance between the atoms increases from equilibrium by r₁ = 0.35 nm, then what is the force from one atom on the other associated with this potential energy? (Enter your answer as postive if they repel each other, and negative if they attract.) Fr(req+r₁) Hint: Hint: 0.89105934nm Kinetic Energy Hint: The atoms are oscillating back and forth. The maximum separation of the atoms is r₂ = 2 nm. What is the kinetic energy of the atoms when they are separated by the equilibrium distance? Click here for a hint K(req) Hint: Hint: = -1.288eV/nm 3.99eV
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON