University Physics (14th Edition)
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 36, Problem 36.20E

Diffraction and Interference Combined. Consider the interference pattern produced by two parallel slits of width a, and separation d, in which d = 3a. The slits are illuminated by normally incident light of wavelength λ. (a) First we ignore diffraction effects due to the slit width. At what angles θ from the central maximum will the next four maxima in the two-slit interference pattern occur? Your answer will be in terms of d and λ. (b) Now we include the effects of diffraction. If the intensity at θ = 0° is I0, what is the intensity at each of the angles in part (a)? (c) Which double-slit interference maxima are missing in the pattern? (d) Compare your results to those illustrated in Fig. 36.12c. In what ways are your results different?

Blurred answer
Students have asked these similar questions
Consider the interference pattern produced by two parallel slits of width a and separation d, in which d = 3a. The slits are illuminated by normally incident light of wavelength λ. (a) First we ignore diffraction effects due to the slit width. At what angles θ from the central maximum will the next four maxima in the two-slit interference pattern occur? Your answer will be in terms of d and λ. (b) Now we include the effects of diffraction. If the intensity at θ = 0° is I0, what is the intensity at each of the angles in part (a)? (c) Which double-slit interference maxima are missing in the pattern?
There are hand-held spectrometers which will separate the colors of light into a "rainbow" using a diffraction grating. Using a single-slit arrangement will provide a MUCH less precise separation - but let's explore what that would do. The width of our single slit will be0.1 mm. (a) What is the angular width (in degrees) of the central maximum of red light (λ=700 nm) ?
How much diffraction spreading does a light beam undergo? One quantitative answer is the full width at half maximum of the central maximum of the single-slit Fraunhofer diffraction pattern. You can evaluate this angle of spreading in this problem. (a) as shown, define φ = πa sin φ/λ and show that at the point where I = 0.5Imax we must have φ = √2 sin φ. (b) Let y1 = sin φ and y2 = φ = /√2. Plot y1 and y2 on the same set of axes over a range from φ = 1 rad to φ = π/2 rad. Determine φ from the point of intersection of the two curves. (c) Then show that if the fraction λ/a is notlarge, the angular full width at half maximum of the central diffraction maximum is θ = 0.885λ/a. (d) What If? Another method to solve the transcendental equation φ = √2 sin φ in part (a) is to guess a first value of φ, use a computer or calculator to see how nearly it fits, and continue to update your estimate until the equation balances. How many steps(iterations) does this process take?

Chapter 36 Solutions

University Physics (14th Edition)

Ch. 36 - Prob. Q36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. Q36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. Q36.17DQCh. 36 - Prob. Q36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY