Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 9E
To determine

Find the capacitance of the diode if VA=1 V, if VA=3 V and if VA=10 V.

Expert Solution & Answer
Check Mark

Answer to Problem 9E

The capacitance of the diode if VA=1 V is 10.1582 fF, if VA=3 V is 6.7952 fF and if VA=10 V is 3.9674 fF.

Explanation of Solution

Given Data:

The given expression for the junction capacitance is Ksε0AW,

The given expression of depletion width of diode is 2Ksε0qN(VbiVA).

The cutoff voltage of the diode is 0.62 V,

Magnitude of charge of electron is 1.6×1019 C,

Value of Ks is given as 11.8 for silicon diode,

The cross sectional area is given as 2 μm2 and

Volume density of electrons is given as 5.0×1018 cm3.

Formula used:

The expression for junction capacitance is as follows,

Cj=Ksε0AW (1)

Here,

A is the cross sectional area,

W is the depletion width,

Cj is the junction capacitance,

ε0 is the permittivity of free space and

Ks is the constant.

The expression for depletion width of the diode is as follows,

W=2Ksε0qN(VbiVA) (2)

Here,

q is the magnitude of charge of electron,

N is the volume density of electrons,

Vbi is the cutoff voltage of diode,

VA is the voltage across the diode and

W is the depletion width.

Calculation:

Substitute 11.8 for Ks, 1.6×1019 C for q, 5.0×1018 cm3 for N, 0.62 V for Vbi, 8.854×1012 Fm for ε0 and 1 V for VA in equation (2),

W=2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018 cm3)((0.62 V)(1 V))  =2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018×106 m3)((0.62 V)(1 V))             { 1 cm3=106 m3}=2.057×108 m

Substitute  11.8 for Ks, 8.854×1012 Fm for ε0, 2.057×108 m for W and 2 μm2 for A in equation (1),

Cj=11.8×(8.854×1012 Fm)×(2 μm2)2.057×108 m=11.8×(8.854×1012 Fm)×(2×1012 m2)2.057×108 m                   { 1 μm2=1012 m2}=101.582×1016 F=10.1582 fF                                                                    { 1 F=1015 fF}

Substitute 11.8 for Ks, 1.6×1019 C for q, 5.0×1018 cm3 for N, 0.62 V for Vbi, 8.854×1012 Fm for ε0 and 3 V for VA in equation (2),

W=2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018 cm3)((0.62 V)(3 V))  =2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018×106 m3)((0.62 V)(3 V))             { 1 cm3=106 m3}=3.075×108 m

Substitute  11.8 for Ks, 8.854×1012 Fm for ε0, 3.075×108 m for W and 2 μm2 for A in equation (1),

Cj=11.8×(8.854×1012 Fm)×(2 μm2)3.075×108 m=11.8×(8.854×1012 Fm)×(2×1012 m2)3.075×108 m                   { 1 μm2=1012 m2}=67.952×1016 F=6.7952 fF                                                                     { 1 F=1015 fF}

Substitute 11.8 for Ks, 1.6×1019 C for q, 5.0×1018 cm3 for N, 0.62 V for Vbi, 8.854×1012 Fm for ε0 and 10 V for VA in equation (2),

W=2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018 cm3)((0.62 V)(10 V))  =2×11.8×8.854×1012 Fm(1.6×1019 C)×(5.0×1018×106 m3)((0.62 V)(10 V))             { 1 cm3=106 m3}=5.2667×108 m

Substitute  11.8 for Ks, 8.854×1012 Fm for ε0, 5.2667×108 m for W and 2 μm2 for A in equation (1),

Cj=11.8×(8.854×1012 Fm)×(2 μm2)5.2667×108 m=11.8×(8.854×1012 Fm)×(2×1012 m2)5.2667×108 m                   { 1 μm2=1012 m2}=39.674×1016 F=3.9674 fF                                                                     { 1 F=1015 fF}

Conclusion:

Thus, the capacitance of the diode if VA=1 V is 10.1582 fF, if VA=3 V is 6.7952 fF and if VA=10 V is 3.9674 fF.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Third approximation of a diode includes both barrier potential VB and the bulk resistance rB of a diode. ○ True ○ False
The voltage signal coming out of the capacitor is with small ripples compare to the voltage signal out of the diode. True False
A simple p*n junction is designed to work as IMPATT diode. The doping concentrations in the p* layer is 1019 cm-3 while the doping in the n-layer is 0.7 x1016 Calculate the peak electric field if the breakdown voltage is 80 V and the dielectric constant is 11.9. Express your answer in the unit of kV/cm. cm-3

Chapter 7 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 7.6 - Prob. 11PCh. 7 - Making use of the passive sign convention,...Ch. 7 - Prob. 2ECh. 7 - (a) If the voltage waveform depicted in Fig. 7.42...Ch. 7 - A capacitor is constructed from two brass plates,...Ch. 7 - Prob. 5ECh. 7 - Prob. 6ECh. 7 - Design a capacitor whose capacitance can be varied...Ch. 7 - Design a capacitor whose capacitance can be varied...Ch. 7 - Prob. 9ECh. 7 - Assuming the passive sign convention, sketch the...Ch. 7 - Prob. 11ECh. 7 - Prob. 12ECh. 7 - Prob. 13ECh. 7 - Calculate the power dissipated in the 40 resistor...Ch. 7 - Prob. 15ECh. 7 - Design a 30 nH inductor using 28 AWG solid soft...Ch. 7 - Prob. 17ECh. 7 - Prob. 18ECh. 7 - Prob. 19ECh. 7 - Prob. 20ECh. 7 - Calculate vL and iL for each of the circuits...Ch. 7 - The current waveform shown in Fig. 7.14 has a rise...Ch. 7 - Determine the inductor voltage which results from...Ch. 7 - Prob. 24ECh. 7 - The voltage across a 2 H inductor is given by vL =...Ch. 7 - Calculate the energy stored in a 1 nH inductor if...Ch. 7 - Determine the amount of energy stored in a 33 mH...Ch. 7 - Making the assumption that the circuits in Fig....Ch. 7 - Calculate the voltage labeled vx in Fig. 7.52,...Ch. 7 - Prob. 30ECh. 7 - Prob. 31ECh. 7 - Determine an equivalent inductance for the network...Ch. 7 - Using as many 1 nH inductors as you like, design...Ch. 7 - Compute the equivalent capacitance Ceq as labeled...Ch. 7 - Prob. 35ECh. 7 - Prob. 36ECh. 7 - Reduce the circuit depicted in Fig. 7.59 to as few...Ch. 7 - Refer to the network shown in Fig. 7.60 and find...Ch. 7 - Prob. 39ECh. 7 - Prob. 40ECh. 7 - Prob. 41ECh. 7 - Prob. 42ECh. 7 - Prob. 43ECh. 7 - Prob. 44ECh. 7 - Prob. 45ECh. 7 - Prob. 46ECh. 7 - Prob. 47ECh. 7 - Let vs = 100e80t V with no initial energy stored...Ch. 7 - Prob. 49ECh. 7 - Prob. 50ECh. 7 - Interchange the location of R1 and Cf in the...Ch. 7 - For the integrating amplifier circuit of Fig....Ch. 7 - Prob. 53ECh. 7 - For the circuit shown in Fig. 7.73, assume no...Ch. 7 - A new piece of equipment designed to make crystals...Ch. 7 - An altitude sensor on a weather balloon provides a...Ch. 7 - One problem satellites face is exposure to...Ch. 7 - The output of a velocity sensor attached to a...Ch. 7 - A floating sensor in a certain fuel tank is...Ch. 7 - (a) If Is = 3 sin t A, draw the exact dual of the...Ch. 7 - Draw the exact dual of the simple circuit shown in...Ch. 7 - (a) Draw the exact dual of the simple circuit...Ch. 7 - (a) Draw the exact dual of the simple circuit...Ch. 7 - Prob. 64ECh. 7 - Prob. 65ECh. 7 - Prob. 66ECh. 7 - Prob. 67ECh. 7 - Prob. 68ECh. 7 - Prob. 69ECh. 7 - Prob. 70ECh. 7 - For the circuit of Fig. 7.28, (a) sketch vout over...Ch. 7 - (a) Sketch the output function vout of the...Ch. 7 - For the circuit of Fig. 7.72, (a) sketch vout over...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Diodes Explained - The basics how diodes work working principle pn junction; Author: The Engineering Mindset;https://www.youtube.com/watch?v=Fwj_d3uO5g8;License: Standard Youtube License