Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
Question
Book Icon
Chapter 8, Problem 122E
Interpretation Introduction

Interpretation: For the given data, mixing ratio and number of molecules per cubic centimeter for both benzene and toluene should be determined.

Concept introduction:

  • Mixing ratio is used to express the concentration of trace compounds in air. Mixing ratios are often expressed as ppmv (parts per million volume);

    ppmvofX=volumeofXatSTPtotalvolumeofairatSTP×106

  • Number of moles of a substance,

    From its given mass is,

Number of moles=GivenmassMolecularmass

Numberofmolecules=Numberofmoles×6.022×1023moleculesmol

  • By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.

According to ideal gas law,

PV=nRT

By rearranging the equation, unknown volume can be determined as,

V=nRTP

Where,

P = pressure in atmospheres

V= volumes in liters

n = number of moles

R =universal gas constant ( 0.08206L×atm/K×mol )

T = temperature in kelvins

Expert Solution & Answer
Check Mark

Answer to Problem 122E

Answer

  • Mixing ratio of benzene  =9.47×10-3ppmv
  • Mixing ratio of toluene   =1.37×10-2ppmv
  • Number of molecules per cubic centimeter for benzene 

=2.31×1011moleculesbenzene/cm3

  • Number of molecules per cubic centimeter for toluene

=3.33×1011moleculestoluene/cm3

Explanation of Solution

Explanation

  • To determine: The mixing ratio of benzene

Mixing ratio of benzene  =9.47×10-3ppmv

Forbenzene,Tocalculatethemixingratio,numberofmolesandvolumeofbenzeneshouldbedetermined.Number of moles=GivenmassMolecularmassGivenmass=89.6×10-9gMolecularmass=78.11gNumberofmoles(nbenzene)=89.6×10-9g78.11g=1.15×10-9molbenzeneVolumeofbenzene=nbenzene×TPR=0.08206L×atm/K×molT=23°C=296KSince,K=°C+273=23°C+273=296KP=748torr=0.99atmSince,1atm=760torr748torr=748760atm=0.99atmVbenzene=1.15×10-9mol×296K×0.08206 LatmKmol0.99atm=2.84×10-8LMixingratio=volumeofXatSTPtotalvolumeofairatSTP×106Vbenzene=2.84×10-8LTotalvolume ofthesample=3.00LMixingratio=2.84×10-8L3.00L×106=9.47×10-3ppmv

  • To determine: Number of molecules per cubic centimeter of benzene.

Number of molecules per cubic centimeter for benzene

=2.31×1011moleculesbenzene/cm3

Numberofmoleculespercubiccentimetre=Numberofmoles×6.022×1023moleculesmolTotalvolumeofthesample=3.0LNumberofmolespervolumeofthesample=1.15×10-9molbenzene3.00LSince,1L=1000cm3Numberofmolespercubiccentimetre=1.15×10-9molbenzene3.00L×11000cm3Numberofmoleculespercubiccentimetre=1.15×10-9molbenzene3.00L×11000cm3×6.022×1023moleculesmol=2.31×1011moleculesbenzene/cm3

  • To determine: The mixing ratio of toluene

Mixing ratio of toluene =1.37×10-2ppmv

Fortoluene,Tocalculatethemixingratio,numberofmolesandvolumeofbenzeneshouldbedetermined.Number of moles=GivenmassMolecularmassGivenmass=153×10-9gMolecularmass=92.13gNumberofmoles(ntoluene)=153×10-9g92.13g=1.66×10-9moltolueneVolumeoftoluene=ntoluene×TPR=0.08206L×atm/K×molT=23°C=296KSince,K=°C+273=23°C+273=296KP=748torr=0.99atmSince,1atm=760torr748torr=748760atm=0.99atmVtoluene=1.66×10-9mol×296K×0.08206 LatmKmol0.99atm=4.10×10-8LMixingratio=volumeofXatSTPtotalvolumeofairatSTP×106Vtoluene=4.10×10-8LTotalvolume ofthesample=3.00LMixingratio=4.10×10-8L3.00L×106=1.37×10-2ppmv

  • To determine: Number of molecules per cubic centimeter of toluene.

Number of molecules per cubic centimeter for toluene

=3.33×1011moleculestoluene/cm3

Numberofmoleculespercubiccentimetre=Numberofmoles×6.022×1023moleculesmolTotalvolumeofthesample=3.0LNumberofmolespervolumeofthesample=1.66×10-9moltoluene3.00LSince,1L=1000cm3Numberofmolespercubiccentimetre=1.66×10-9moltoluene3.00L×11000cm3Numberofmoleculespercubiccentimetre=1.66×10-9moltoluene3.00L×11000cm3×6.022×1023moleculesmol=3.33×1011moleculestoluene/cm3

Conclusion

Conclusion

Mixing ratio and number of molecules per cubic centimeter for both benzene and toluene is determined on the basis of respective equations.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the following reaction, 65.1g of barium hydroxide are allowed to react with 40.9g of sulfuric acid  barium hydroxide(aq)+sulfuric acid(aq)---barium sulfate(s)+water(l)  what is the medium of barium sulfate that can be formed?  what is the formula for the limiting reagent?  what amount of excess reagent remains after the reaction is complete?
Imagine that you were the chief engineer for NASA's Apollo 13 mission to the moon. The air filter which they had been using is fully saturated and no longer works. The astronauts are running out of oxygen and need to get rid of the excess carbon dioxide. You remember that the astronauts have a container of 14.5 kg of sodium hydroxide on the ship. As a chemical engineer, you know that sodium hydroxide can be used to remove carbon dioxide from the air by producing sodium carbonate and dihydrogen monoxide. How many liters of carbon dioxide are cleaned by the amount of sodium hydroxide given in the problem? The astronauts have 3 days left before they land on earth. You know that there are 4 astronauts, and each astronaut emits roughly 700 grams of carbon dioxide (CO2) each day. • How many liters of CO2 are produced by the astronauts? • Is there enough NaOH for the astronauts to survive the rest of their trip? If the astronaut survived the trip, how much NaOH was left over? If the astronaut…
The human body burns glucose (C6H12O6) for energy according to this chemical reaction: C6H12O6+6O2→ 6CO2+6H2O The products of the reaction are carbon dioxide CO2 and water H2O Interestingly, all of the carbon dioxide and much of the water exits the body through the lungs: on every breath, the average person exhales 500.mL of air, which is typically enriched to 4% CO2 and 5% water vapor by volume. In short, when a person loses weight by dieting, the weight that is lost actually departs his body as a gas, every time he exhales. Each kilogram of body fat lost requires exhaling about 2.9kg of carbon dioxide. Calculate how many breaths it takes an average person to "exhale" 0.50kg  of fat. Round your answer to the nearest thousand. You'll need to know that the density of CO2 is 2.0 kg/m^3 .

Chapter 8 Solutions

Chemistry: An Atoms First Approach

Ch. 8 - Prob. 3ALQCh. 8 - Prob. 4ALQCh. 8 - Prob. 6ALQCh. 8 - Prob. 8ALQCh. 8 - Prob. 11ALQCh. 8 - Prob. 12ALQCh. 8 - Prob. 15ALQCh. 8 - Prob. 16ALQCh. 8 - Draw molecular-level views that show the...Ch. 8 - Prob. 20QCh. 8 - Prob. 21QCh. 8 - Prob. 22QCh. 8 - Prob. 23QCh. 8 - Prob. 24QCh. 8 - Prob. 25QCh. 8 - Consider two different containers, each filled...Ch. 8 - Prob. 27QCh. 8 - Prob. 28QCh. 8 - Prob. 29QCh. 8 - Prob. 30QCh. 8 - Prob. 31QCh. 8 - Prob. 32QCh. 8 - Prob. 33QCh. 8 - Prob. 34QCh. 8 - Prob. 35QCh. 8 - Prob. 36QCh. 8 - Prob. 37ECh. 8 - Prob. 38ECh. 8 - A sealed-tube manometer (as shown below) can be...Ch. 8 - Prob. 40ECh. 8 - A diagram for an open-tube manometer is shown...Ch. 8 - Prob. 42ECh. 8 - Prob. 43ECh. 8 - Prob. 44ECh. 8 - Prob. 45ECh. 8 - Prob. 46ECh. 8 - Prob. 47ECh. 8 - Prob. 48ECh. 8 - Prob. 49ECh. 8 - Prob. 50ECh. 8 - The Steel reaction vessel of a bomb calorimeter,...Ch. 8 - A 5.0-L flask contains 0.60 g O2 at a temperature...Ch. 8 - Prob. 53ECh. 8 - A person accidentally swallows a drop of liquid...Ch. 8 - A gas sample containing 1.50 moles at 25C exerts a...Ch. 8 - Prob. 56ECh. 8 - Prob. 57ECh. 8 - What will be the effect on the volume of an ideal...Ch. 8 - Prob. 59ECh. 8 - Prob. 60ECh. 8 - An ideal gas is contained in a cylinder with a...Ch. 8 - Prob. 62ECh. 8 - A sealed balloon is filled with 1.00 L helium at...Ch. 8 - Prob. 64ECh. 8 - Consider the following reaction:...Ch. 8 - A student adds 4.00 g of dry ice (solid CO2) to an...Ch. 8 - Air bags are activated when a severe impact causes...Ch. 8 - Concentrated hydrogen peroxide solutions are...Ch. 8 - In 1897 the Swedish explorer Andre tried to reach...Ch. 8 - Sulfur trioxide, SO3, is produced in enormous...Ch. 8 - A 15.0-L rigid container was charged with 0.500...Ch. 8 - An important process for the production of...Ch. 8 - Consider the reaction between 50.0 mL liquid...Ch. 8 - Urea (H2NCONH2) is used extensively as a nitrogen...Ch. 8 - Prob. 75ECh. 8 - Prob. 76ECh. 8 - Prob. 77ECh. 8 - A compound has the empirical formula CHCl. A...Ch. 8 - Prob. 79ECh. 8 - Given that a sample of air is made up of nitrogen,...Ch. 8 - Prob. 81ECh. 8 - Prob. 82ECh. 8 - Prob. 83ECh. 8 - Prob. 84ECh. 8 - Consider the flasks in the following diagram. What...Ch. 8 - Consider the flask apparatus in Exercise 85, which...Ch. 8 - Prob. 87ECh. 8 - At 0C a 1.0-L flask contains 5.0 102 mole of N2,...Ch. 8 - Prob. 89ECh. 8 - A tank contains a mixture of 52.5 g oxygen gas and...Ch. 8 - Prob. 91ECh. 8 - Helium is collected over water at 25C and 1.00 atm...Ch. 8 - At elevated temperatures, sodium chlorate...Ch. 8 - Xenon and fluorine will react to form binary...Ch. 8 - Methanol (CH3OH) can be produced by the following...Ch. 8 - In the Mthode Champenoise, grape juice is...Ch. 8 - Hydrogen azide, HN3, decomposes on heating by the...Ch. 8 - Prob. 98ECh. 8 - Some very effective rocket fuels are composed of...Ch. 8 - The oxides of Group 2A metals (symbolized by M...Ch. 8 - Prob. 101ECh. 8 - Prob. 102ECh. 8 - Prob. 103ECh. 8 - Prob. 104ECh. 8 - Prob. 105ECh. 8 - Prob. 106ECh. 8 - Prob. 107ECh. 8 - Prob. 108ECh. 8 - Prob. 109ECh. 8 - Prob. 110ECh. 8 - Prob. 111ECh. 8 - Prob. 112ECh. 8 - Prob. 113ECh. 8 - Prob. 114ECh. 8 - Prob. 115ECh. 8 - Prob. 116ECh. 8 - Prob. 117ECh. 8 - Prob. 118ECh. 8 - Prob. 119ECh. 8 - Prob. 120ECh. 8 - Prob. 121ECh. 8 - Prob. 122ECh. 8 - Prob. 123AECh. 8 - At STP, 1.0 L Br2 reacts completely with 3.0 L F2,...Ch. 8 - Prob. 125AECh. 8 - A 2.747g sample of manganese metal is reacted with...Ch. 8 - Prob. 127AECh. 8 - Cyclopropane, a gas that when mixed with oxygen is...Ch. 8 - The nitrogen content of organic compounds can be...Ch. 8 - Prob. 130AECh. 8 - A 15.0L tank is filled with H2 to a pressure of...Ch. 8 - A spherical glass container of unknown volume...Ch. 8 - Prob. 133AECh. 8 - A 20.0L stainless steel container at 25C was...Ch. 8 - Metallic molybdenum can be produced from the...Ch. 8 - Prob. 136AECh. 8 - Prob. 137AECh. 8 - One of the chemical controversies of the...Ch. 8 - An organic compound contains C, H, N, and O....Ch. 8 - Prob. 140AECh. 8 - The total volume of hydrogen gas needed to fill...Ch. 8 - Prob. 142AECh. 8 - Prob. 143CWPCh. 8 - Prob. 144CWPCh. 8 - A certain flexible weather balloon contains helium...Ch. 8 - Prob. 146CWPCh. 8 - A 20.0L nickel container was charged with 0.859...Ch. 8 - Consider the unbalanced chemical equation below:...Ch. 8 - Prob. 149CWPCh. 8 - Which of the following statements is(are) true? a....Ch. 8 - A chemist weighed out 5.14 g of a mixture...Ch. 8 - A mixture of chromium and zinc weighing 0.362 g...Ch. 8 - Prob. 153CPCh. 8 - You have an equimolar mixture of the gases SO2 and...Ch. 8 - Methane (CH4) gas flows into a combustion chamber...Ch. 8 - Prob. 156CPCh. 8 - Prob. 157CPCh. 8 - Prob. 158CPCh. 8 - You have a helium balloon at 1.00 atm and 25C. You...Ch. 8 - Prob. 160CPCh. 8 - You are given an unknown gaseous binary compound...Ch. 8 - Prob. 162CPCh. 8 - Calculate w and E when 1 mole of a liquid is...Ch. 8 - The preparation of NO2(g) from N2(g) and O2(g) is...Ch. 8 - In the presence of nitric acid, UO2+ undergoes a...Ch. 8 - Silane, SiH4, is the silicon analogue of methane,...Ch. 8 - Prob. 167IPCh. 8 - Prob. 168IPCh. 8 - Prob. 169MP
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning