Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
Question
Book Icon
Chapter 38, Problem 39PQ
To determine

The distance between the image and the surface 2 and the magnification of the final image.

Expert Solution & Answer
Check Mark

Answer to Problem 39PQ

The distance of the screen from the surface 2 is 7.5cm and the magnification of the final image is 0.13.

Explanation of Solution

Write the expression for the refraction at a spherical surface.

    nido+ntdi=(ntni)r                                                                           (I)

Here, ni is the index of refraction of the travelling medium, nt is the index of refraction of the denser medium, do is the object distance, dt is the image distance and r is the radius of curvature.

Rearrange the equation (I) for di.

    ntdi=(ntni)rnidodi=nt(ntni)rnido                                                                          (II)

Write the expression for the magnification for a refractive surface.

    m=nidintdo                                                                                  (III)

Here, m is the magnification for a refractive surface.

Write the expression for the total magnification for a thick lens.

    M=m1m2                                                                                          (IV)

Here, M is the total magnification, m1 is the magnification at surface 1 and m2 is the magnification at surface 2.

Conclusion:

Substitute 1.333 for nt, 1 for ni, 6.0cm for r and 100.0cm for do in equation (II) to find di.

    di=1.333(1.3331)6.0cm1100.0cm=1.3330.05550.01cm=29.3cm

The positive sign indicates that the image is formed on the right side of surface 1.

Substitute 1.333 for nt, 1 for ni, 100.0cm for do and 29.3cm for di in equation (III) to find m1.

    m1=(1)(29.3cm)(1.333)(100.0cm)=0.22

The image formed by surface 1 acts as the object for the surface 2. Thus, the object distance for surface 2 is,

    do=12.0cm29.3cm=17.3cm

Substitute 1.333 for ni, 1 for nt, 6.0cm for r and 17.3cm for do in equation (II) to find di.

    di=1(11.333)6.0cm1.33317.3cm=10.0555+0.077cm=7.5cm

The positive sign indicates that the image is formed behind the surface 2.

Substitute 1.333 for nt, 1 for ni, 17.3cm for do and 7.5cm for di in equation (III) to find m2.

    m2=(1.333)(7.5cm)(1)(17.3cm)=0.58

Substitute 0.22 for m1 and 0.58 for m2 in equation (IV) to find M.

    M=(0.22)(0.58)=0.13

Therefore, the distance of the screen from the surface 2 is 7.5cm and the magnification of the final image is 0.13.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An object of height 2.9 cm is placed at 22 cm in front of a diverging lens of focal length, f = -17 cm. Behind the diverging lens, there is a converging lens of focal length, f = 17 cm. The distance between the lenses is 3 cm. In the next few steps, you will find the location and size of the final image. Hint a. Where is the intermediate image formed by the first diverging lens? Image distance from first lens is di= cm. (Use the sign to indicate which side the image is on; positive sign means image is on the side of outgoing rays, and negative sign means image is on the side opposite to the outgoing rays.) b. Where is the final image formed by the second converging lens? Image distance from second lens is di₂ = cm. (Use the sign to indicate which side the image is on.) c. How large is the intermediate image formed by the first diverging lens? Intermediate image height is h₂ = cm. (Use the sign to indicate whether the image is upright (positive) or inverted (negative).) d. How large is…
Problem 8: Consider the compound optical system shown in the diagram, where two thin lenses of focal lengths 7.5 cm (left lens) and 7.5 cm (right lens) are separated by a distance 45 cm. a. If an object is placed a distance do = 17.3 cm to the left of the first lens (the left one) as shown in the figure, how far to the right of that lens, in centimeters, is the image formed? b. What is the magnification of the first lens? c. What is the object distance, in centimeters, for the second lens (the right lens)? d. What is the image distance, in centimeters, for the second lens? e. What is the magnification of the second lens?
Chapter 34, Problem 034 SN XIncorrect. When an object is placed a distance p in front of a spherical refracting surface with radius of curvature r, the image distance is i. If the index of refraction of the surrounding material is n1, what is the index of refraction of the refracting material? State your answer in terms of the given variables. n2 = 1 1 Edit 1

Chapter 38 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 38 - Prob. 3PQCh. 38 - A light ray is incident on an interface between...Ch. 38 - Prob. 5PQCh. 38 - Prob. 6PQCh. 38 - Prob. 7PQCh. 38 - A ray of light enters a liquid from air. If the...Ch. 38 - Prob. 9PQCh. 38 - Figure P38.10 on the next page shows a...Ch. 38 - Prob. 11PQCh. 38 - Prob. 12PQCh. 38 - Prob. 13PQCh. 38 - Prob. 14PQCh. 38 - Prob. 15PQCh. 38 - A fish is 3.25 m below the surface of still water...Ch. 38 - N A fish is 3.25 m below the surface of still...Ch. 38 - A beam of monochromatic light within a fiber optic...Ch. 38 - Prob. 19PQCh. 38 - Prob. 20PQCh. 38 - Consider a light ray that enters a pane of glass...Ch. 38 - Prob. 22PQCh. 38 - Prob. 23PQCh. 38 - Prob. 24PQCh. 38 - Prob. 25PQCh. 38 - Prob. 26PQCh. 38 - Prob. 27PQCh. 38 - Prob. 28PQCh. 38 - The wavelength of light changes when it passes...Ch. 38 - Prob. 30PQCh. 38 - Light is incident on a prism as shown in Figure...Ch. 38 - Prob. 32PQCh. 38 - Prob. 33PQCh. 38 - Prob. 34PQCh. 38 - Prob. 35PQCh. 38 - Prob. 36PQCh. 38 - Prob. 37PQCh. 38 - A Lucite slab (n = 1.485) 5.00 cm in thickness...Ch. 38 - Prob. 39PQCh. 38 - Prob. 40PQCh. 38 - The end of a solid glass rod of refractive index...Ch. 38 - Prob. 42PQCh. 38 - Figure P38.43 shows a concave meniscus lens. If...Ch. 38 - Show that the magnification of a thin lens is...Ch. 38 - Prob. 45PQCh. 38 - Prob. 46PQCh. 38 - Prob. 47PQCh. 38 - The radius of curvature of the left-hand face of a...Ch. 38 - Prob. 49PQCh. 38 - Prob. 50PQCh. 38 - Prob. 51PQCh. 38 - Prob. 52PQCh. 38 - Prob. 53PQCh. 38 - Prob. 54PQCh. 38 - Prob. 55PQCh. 38 - Prob. 56PQCh. 38 - Prob. 57PQCh. 38 - Prob. 58PQCh. 38 - Prob. 59PQCh. 38 - Prob. 60PQCh. 38 - Prob. 61PQCh. 38 - Prob. 62PQCh. 38 - Prob. 63PQCh. 38 - Prob. 64PQCh. 38 - Prob. 65PQCh. 38 - Prob. 66PQCh. 38 - Prob. 67PQCh. 38 - Prob. 68PQCh. 38 - CASE STUDY Susan wears corrective lenses. The...Ch. 38 - A Fill in the missing entries in Table P38.70....Ch. 38 - Prob. 71PQCh. 38 - Prob. 72PQCh. 38 - Prob. 73PQCh. 38 - Prob. 74PQCh. 38 - An object 2.50 cm tall is 15.0 cm in front of a...Ch. 38 - Figure P38.76 shows an object placed a distance...Ch. 38 - Prob. 77PQCh. 38 - Prob. 78PQCh. 38 - Prob. 79PQCh. 38 - CASE STUDY A group of students is given two...Ch. 38 - A group of students is given two converging...Ch. 38 - Prob. 82PQCh. 38 - Two lenses are placed along the x axis, with a...Ch. 38 - Prob. 84PQCh. 38 - Prob. 85PQCh. 38 - Prob. 86PQCh. 38 - Prob. 87PQCh. 38 - Prob. 88PQCh. 38 - Prob. 89PQCh. 38 - Prob. 90PQCh. 38 - Prob. 91PQCh. 38 - Prob. 92PQCh. 38 - Prob. 93PQCh. 38 - Prob. 94PQCh. 38 - Prob. 95PQCh. 38 - Prob. 96PQCh. 38 - Prob. 97PQCh. 38 - A Fermats principle of least time for refraction....Ch. 38 - Prob. 99PQCh. 38 - Prob. 100PQCh. 38 - Prob. 101PQCh. 38 - Prob. 102PQCh. 38 - Prob. 103PQCh. 38 - Prob. 104PQCh. 38 - Curved glassair interfaces like those observed in...Ch. 38 - Prob. 106PQCh. 38 - Prob. 107PQCh. 38 - Prob. 108PQCh. 38 - Prob. 109PQCh. 38 - Prob. 110PQCh. 38 - Prob. 111PQCh. 38 - Prob. 112PQCh. 38 - Prob. 113PQCh. 38 - Prob. 114PQCh. 38 - The magnification of an upright image that is 34.0...Ch. 38 - Prob. 116PQCh. 38 - Prob. 117PQCh. 38 - Prob. 118PQCh. 38 - Prob. 119PQCh. 38 - Prob. 120PQCh. 38 - Prob. 121PQCh. 38 - Prob. 122PQCh. 38 - Prob. 123PQCh. 38 - Prob. 124PQCh. 38 - Prob. 125PQCh. 38 - Prob. 126PQCh. 38 - Light enters a prism of crown glass and refracts...Ch. 38 - Prob. 128PQCh. 38 - An object is placed a distance of 10.0 cm to the...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning