Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.45P

An electronic device that internally generates 600 mW of heat has a maximum permissible operating temperature of 70°C . It is to be cooled in 25°C air by attaching aluminum fins with a total surface area of 12 cm 2 . The convection heat transfer coefficient between the fins and the air is 20 W/m 2 K . Estimate the operating temperature when the fins are attached in such a way that (a) there is a contact resistance of approximately 50 K/W between the surface of the device and the fin array and (b) there is no contact resistance (in this case, the construction of the device is more expensive). Comment on the design options.

Chapter 1, Problem 1.45P, An electronic device that internally generates 600 mW of heat has a maximum permissible operating

Blurred answer
Students have asked these similar questions
An uninsulated 100-mm diameter steam pipe runs for 25-meters inside a room whose walls and air are at a temperature of 25C .The superheated steam inside the pipe maintains the temperature at the pipe surface at 150C. If the natural convection heat transfer coefficient of the air outside the pipe is 10 W/(m^2)(k)and the surface emissivity is 0.8, compute for the total thermal resistance at the outside surface of the pipe in K/W.
Consider a long, insulated cable supplying power to a community. It is elevated in the air by using poles. The ambient air temperature is 20oC and the convective heat transfer coefficient is h = 20 W/m2.K. Radiation exchange between the cable surface and the environment can be neglected. Make your calculations considering per meter-length. The wire carries 500 Amp current and has a resistance of 0.0001 Ohm/m. The diameter of the solid core wire is 1.0 cm and has a thermal conductivity of k = 20 W/m.K The electrically insulating material covering the wire-core has a thickness of 0.5 cm with a thermal conductivity of k = 0.01 W/m.K a) What is the rate of heat loss from the cable to the environment in kW/meter? b) What is the outside surface (exposed to air) temperature of the cable? c) What is the temperature of the interface between the insulation sleeve and the core-wire carrying the electric power? If the sleeve material has to remain below 100 oC for the long term, would this…
A central heating system from a house consists of 50m of 15mm outside diameter copper pipe with a wall thickness of 1mm. This pipe is used to distribute water at a temperature of 70 degrees C. Calculate the rate of heat loss from the length of pipe if it is fitted with a 15mm radial thickness of insulation. Take the ambient air temperature to be 15 degrees C and the internal and external surface heat transfer coefficients to be 100 W/m².K and 8 W/m?.K respectively. The thermal conductivity of the copper is known to be 400 W/m.K and 0.05 W/m.K for the insulation. State your answer correct to three significant figures in Watts. Assume steady state radial heat transfer.

Chapter 1 Solutions

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)

Ch. 1 - 1.11 Calculate the heat loss through a glass...Ch. 1 - 1.12 A wall with a thickness is made of a...Ch. 1 - 1.13 If the outer air temperature in Problem is...Ch. 1 - Using Table 1.4 as a guide, prepare a similar...Ch. 1 - 1.15 A thermocouple (0.8-mm-diameter wire) used to...Ch. 1 - Water at a temperature of 77C is to be evaporated...Ch. 1 - The heat transfer rate from hot air by convection...Ch. 1 - The heat transfer coefficient for a gas flowing...Ch. 1 - 1.19 A cryogenic fluid is stored in a...Ch. 1 - A high-speed computer is located in a...Ch. 1 - 1.21 In an experimental set up in a laboratory, a...Ch. 1 - 1.22 In order to prevent frostbite to skiers on...Ch. 1 - Using the information in Problem 1.22, estimate...Ch. 1 - Two large parallel plates with surface conditions...Ch. 1 - 1.25 A spherical vessel, 0.3 m in diameter, is...Ch. 1 - 1.26 Repeat Problem 1.25 but assume that the...Ch. 1 - Determine the rate of radiant heat emission in...Ch. 1 - 1.28 The sun has a radius of and approximates a...Ch. 1 - 1.29 A spherical interplanetary probe with a 30-cm...Ch. 1 - A spherical communications satellite, 2 m in...Ch. 1 - A long wire 0.7 mm in diameter with an emissivity...Ch. 1 - Wearing layers of clothing in cold weather is...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - Repeat Problem 1.35 but assume that instead of...Ch. 1 - 1.37 Mild steel nails were driven through a solid...Ch. 1 - Prob. 1.38PCh. 1 - 1.39 On a cold winter day, the outside wall of a...Ch. 1 - As a designer working for a major electric...Ch. 1 - 1.41 A heat exchanger wall consists of a copper...Ch. 1 - 1.43 A simple solar heater consists of a flat...Ch. 1 - A composite refrigerator wall is composed of 5 cm...Ch. 1 - An electronic device that internally generates 600...Ch. 1 - 1.47 A flat roof is modeled as a flat plate...Ch. 1 - A horizontal, 3-mm-thick flat-copper plate, 1-m...Ch. 1 - 1.49 A small oven with a surface area of is...Ch. 1 - A steam pipe 200 mm in diameter passes through a...Ch. 1 - 1.51 The inner wall of a rocket motor combustion...Ch. 1 - 1.52 A flat roof of a house absorbs a solar...Ch. 1 - Determine the power requirement of a soldering...Ch. 1 - 1.54 The soldering iron tip in Problem 1.53...Ch. 1 - Prob. 1.55PCh. 1 - A pipe carrying superheated steam in a basement at...Ch. 1 - Draw the thermal circuit for heat transfer through...Ch. 1 - 1.60 Two electric resistance heaters with a 20 cm...Ch. 1 - 1.63 Liquid oxygen (LOX) for the space shuttle is...Ch. 1 - The interior wall of a large, commercial walk-in...Ch. 1 - 1.67 In beauty salons and in homes, a ubiquitous...Ch. 1 - The heat transfer coefficient between a surface...Ch. 1 - The thermal conductivity of fibreglass insulation...Ch. 1 - 1.71 The thermal conductivity of silver at 212°F...Ch. 1 - 1.72 An ice chest (see sketch) is to constructed...Ch. 1 - Estimate the R-values for a 5-cm-thick fiberglass...Ch. 1 - A manufacturer in the United States wants to sell...Ch. 1 - Referring to Problem 1.74, how many kilograms of...Ch. 1 - 1.76 Explain a fundamental characteristic that...Ch. 1 - 1.77 Explain each in your own words. (a) What is...Ch. 1 - What are the important modes of heat transfer for...Ch. 1 - 1.79 Consider the cooling of (a) a personal...Ch. 1 - Describe and compare the modes of heat loss...Ch. 1 - A person wearing a heavy parka is standing in a...Ch. 1 - Discuss the modes of heat transfer that determine...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license